37 research outputs found

    3D bioprinted hydrogel scaffolds laden with Schwann cells for use as nerve repair conduits

    Get PDF
    The goal of nerve tissue engineering is to promote and guide axon growth across a site of nerve injury without misdirection. Bioengineered tissue scaffolds have been shown to be promising for the regeneration of damaged peripheral nerves. Schwann cells play a pivotal role following nerve injury by forming aligned “bands of BĂŒngner” that promote and guide axon regeneration into the distal nerve segment. The incorporation of living Schwann cells into various hydrogels has therefore been urged during the fabrication of tissue engineered nerve scaffolds. The aim of this research is to characterize biomaterials suitable for 3D bioplotting of nerve repair scaffolds. Here a novel technique of scaffold fabrication has been optimized to print alginate-based three-dimensional tissue scaffolds containing hyaluronic acid and living Schwann cells. Alginate/hyaluronic acid scaffolds were successfully fabricated with good printability and cell viability. Addition of the polycation polyethyleneimine (PEI) during the fabrication process stabilized the structure of alginate through the formation of a polyelectrolyte complex and had a significant influence on the degree of swelling, degradation rate, mechanical property, and release kinetics of incorporated protein within the scaffolds. A preliminary in vivo study showed the feasibility of implanting 3D printed alginate/hyaluronic acid scaffolds as nerve conduits in Sprague-Dawley (SD) rats with resected sciatic nerves. However alginate/hyaluronic acid scaffolds were found to be unsuitable for axonal regeneration. Further in vitro culture of Schwann cells was performed in collagen type-I, fibrin, fibrin/hyaluronic acid, and their combination with alginate. It was found that Schwann cells had more favorable cell morphology in fibrin/hyaluronic acid or collagen without alginate. Schwann cell proliferation and alignment were better in fibrin/hyaluronic acid. Therefore fibrin/hyaluronic acid is more ideal than most other hydrogel formulations for use in the bioprinting of nerve repair tissue engineering scaffolds, which incorporate cellular elements. As Schwann cells also align along the long axis of the printed fibrin/hyaluronic acid strands, 3D bioprinting of multiple layers of crosslinked fibrin strands can be used to fabricate a nerve conduit mimicking the bands of BĂŒngner

    NNeMo (Neonatal NeuroMonitor) - a hybrid optical system to characterize perfusion and metabolism in the newborn brain

    Get PDF
    Premature birth, defined as a gestational period less than 37 weeks, occurs in 8% of infants born in Canada. These births are associated with a higher risk of developing neurological complications. Infants born with very low birth weights (VLBW, \u3c 1500 g) experience cognitive or behavioural deficits at a rate of 40-50%, while a further 5-10% develop major disorders such as cerebral palsy. The likelihood of injury increases with a shorter gestational period and/or a lower birthweight. Intraventricular hemorrhaging (IVH) occurs in 20-25% of VLBW infants, characterized by bleeding in the germinal matrix and surrounding white matter. This highly vascularized region is particularly susceptible to bleeds due to underdeveloped cerebrovascular structures. Severe IVH causes an inflammatory response and subsequent obstruction of cerebrospinal fluid (CSF) drainage, resulting in enlargement of the brain’s ventricles, referred to as post-hemorrhagic ventricular dilatation (PHVD). PHVD increases intracranial pressure and can result in compression/damage of brain tissue. Diagnosis of IVH and PHVD is regularly performed using cranial ultrasound. Clinicians can visually assess and grade hemorrhaging/ventricle dilatation. Ultrasound, however, is limited in its ability to continuously monitor and only detects irreversible damage. NNeMo (Neonatal NeuroMonitor) is a hybrid optical device combining diffuse correlation (DCS) and near-infrared spectroscopy (NIRS) to simultaneous monitor cerebral blood flow (CBF) and metabolism at the bedside. DCS analyzes light scatter from red blood cells to infer their motion and calculate CBF while NIRS exploits light absorption properties to quantify changes in oxidized cytochrome c oxidase (oxCCO), a direct marker of energy metabolism. System validation was presented in a piglet model of neonatal hypoxia-ischemia. Clinical translation of NNeMo was demonstrated in PHVD infants during ventricular taps (i.e., CSF drainage). Changes in perfusion and metabolism are presented in premature infants at high risk of IVH within the first 72 hours of life. Lastly, NNeMo was translated to the cardiac operating room, in patients undergoing surgery with cardiopulmonary bypass, to observe metabolic response to large intraoperative changes in CBF. Optical measures of perfusion and metabolism show potential to act as prognostic markers of injury and could aid clinicians in patient management before significant damage persists

    Direct assessment of extracerebral signal contamination on optical measurements of cerebral blood flow, oxygenation, and metabolism

    Get PDF
    Significance: Near-infrared spectroscopy (NIRS) combined with diffuse correlation spectroscopy (DCS) provides a noninvasive approach for monitoring cerebral blood flow (CBF), oxygenation, and oxygen metabolism. However, these methods are vulnerable to signal contamination from the scalp. Our work evaluated methods of reducing the impact of this contamination using time-resolved (TR) NIRS and multidistance (MD) DCS. Aim: The magnitude of scalp contamination was evaluated by measuring the flow, oxygenation, and metabolic responses to a global hemodynamic challenge. Contamination was assessed by collecting data with and without impeding scalp blood flow. Approach: Experiments involved healthy participants. A pneumatic tourniquet was used to cause scalp ischemia, as confirmed by contrast-enhanced NIRS, and a computerized gas system to generate a hypercapnic challenge. Results: Comparing responses acquired with and without the tourniquet demonstrated that the TR-NIRS technique could reduce scalp contributions in hemodynamic signals up to 4 times (rSD Π3 cm) and 6 times (rSD Π4 cm). Similarly, blood flow responses from the scalp and brain could be separated by analyzing MD DCS data with a multilayer model. Using these techniques, there was no change in metabolism during hypercapnia, as expected, despite large increases in CBF and oxygenation. Conclusion: NIRS/DCS can accurately monitor CBF and metabolism with the appropriate enhancement to depth sensitivity, highlighting the potential of these techniques for neuromonitoring

    Incorporating early and late-arriving photons to improve the reconstruction of cerebral hemodynamic responses acquired by time-resolved near-infrared spectroscopy

    Get PDF
    Significance: Despite its advantages in terms of safety, low cost, and portability, functional near-infrared spectroscopy applications can be challenging due to substantial signal contamination from hemodynamics in the extracerebral layer (ECL). Time-resolved near-infrared spectroscopy (tr NIRS) can improve sensitivity to brain activity but contamination from the ECL remains an issue. This study demonstrates how brain signal isolation can be further improved by applying regression analysis to tr data acquired at a single source-detector distance. Aim: To investigate if regression analysis can be applied to single-channel trNIRS data to further isolate the brain and reduce signal contamination from the ECL. Approach: Appropriate regressors for trNIRS were selected based on simulations, and performance was evaluated by applying the regression technique to oxygenation responses recording during hypercapnia and functional activation. Results: Compared to current methods of enhancing depth sensitivity for trNIRS (i.e., higher statistical moments and late gates), incorporating regression analysis using a signal sensitive to the ECL significantly improved the extraction of cerebral oxygenation signals. In addition, this study demonstrated that regression could be applied to trNIRS data from a single detector using the early arriving photons to capture hemodynamic changes in the ECL. Conclusion: Applying regression analysis to trNIRS metrics with different depth sensitivities improves the characterization of cerebral oxygenation signals

    Dynamic tracking of microvascular hemoglobin content for continuous perfusion monitoring in the intensive care unit: pilot feasibility study

    Get PDF
    Purpose: There is a need for bedside methods to monitor oxygen delivery in the microcirculation. Near-infrared spectroscopy commonly measures tissue oxygen saturation, but does not reflect the time-dependent variability of microvascular hemoglobin content (MHC) that attempts to match oxygen supply with demand. The objective of this study is to determine the feasibility of MHC monitoring in critically ill patients using high-resolution near-infrared spectroscopy to assess perfusion in the peripheral microcirculation. Methods: Prospective observational cohort of 36 patients admitted within 48 h at a tertiary intensive care unit. Perfusion was measured on the quadriceps, biceps, and/or deltoid, using the temporal change in optical density at the isosbestic wavelength of hemoglobin (798 nm). Continuous wavelet transform was applied to the hemoglobin signal to delineate frequency ranges corresponding to physiological oscillations in the cardiovascular system. Results: 31/36 patients had adequate signal quality for analysis, most commonly affected by motion artifacts. MHC signal demonstrates inter-subject heterogeneity in the cohort, indicated by different patterns of variability and frequency composition. Signal characteristics were concordant between muscle groups in the same patient, and correlated with systemic hemoglobin levels and oxygen saturation. Signal power was lower for patients receiving vasopressors, but not correlated with mean arterial pressure. Mechanical ventilation directly impacts MHC in peripheral tissue. Conclusion: MHC can be measured continuously in the ICU with high-resolution near-infrared spectroscopy, and reflects the dynamic variability of hemoglobin distribution in the microcirculation. Results suggest this novel hemodynamic metric should be further evaluated for diagnosing microvascular dysfunction and monitoring peripheral perfusion

    A Case of Organizing Pneumonia Following Azacitidine Treatment for Myelodysplastic Syndrome

    Get PDF
    Organizing pneumonia (OP) is a lung pathology mainly affecting distal lung structures. Its etiology is often unknown, in which case it is termed cryptogenic organizing pneumonia (COP).  Of those cases of OP with an identified cause, the usual culprits include infections, medications, and radiation therapy. In this report, we present the case of a 73-year-old female on azacitidine –a pyrimidine analogue– used for treatment of myelodysplastic syndrome (MDS). The patient presented with fever, productive cough, and pleuritic chest pain. A CT of the chest, a bronchoalveolar lavage and a transthoracic biopsy were performed, and findings were consistent with OP, thought to be induced by azacitidine. The patient was treated with prednisone and subsequently showed significant improvement. Although rare, this case underlines the importance of considering OP in the context of non-resolving pulmonary infiltrates, particularly when there is a potentially relevant exposure, such as azacitidine

    Assessing cerebral blood flow, oxygenation and cytochrome c oxidase stability in preterm infants during the first 3 days after birth

    Get PDF
    A major concern with preterm birth is the risk of neurodevelopmental disability. Poor cerebral circulation leading to periods of hypoxia is believed to play a significant role in the etiology of preterm brain injury, with the first three days of life considered the period when the brain is most vulnerable. This study focused on monitoring cerebral perfusion and metabolism during the first 72 h after birth in preterm infants weighing less than 1500 g. Brain monitoring was performed by combining hyperspectral near-infrared spectroscopy to assess oxygen saturation and the oxidation state of cytochrome c oxidase (oxCCO), with diffuse correlation spectroscopy to monitor cerebral blood flow (CBF). In seven of eight patients, oxCCO remained independent of CBF, indicating adequate oxygen delivery despite any fluctuations in cerebral hemodynamics. In the remaining infant, a significant correlation between CBF and oxCCO was found during the monitoring periods on days 1 and 3. This infant also had the lowest baseline CBF, suggesting the impact of CBF instabilities on metabolism depends on the level of blood supply to the brain. In summary, this study demonstrated for the first time how continuous perfusion and metabolic monitoring can be achieved, opening the possibility to investigate if CBF/oxCCO monitoring could help identify preterm infants at risk of brain injury

    Perfusion and Metabolic Neuromonitoring during Ventricular Taps in Infants with Post-Hemorrhagic Ventricular Dilatation.

    Get PDF
    Post-hemorrhagic ventricular dilatation (PHVD) is characterized by a build-up of cerebral spinal fluid (CSF) in the ventricles, which increases intracranial pressure and compresses brain tissue. Clinical interventions (i.e., ventricular taps, VT) work to mitigate these complications through CSF drainage; however, the timing of these procedures remains imprecise. This study presents Neonatal NeuroMonitor (NNeMo), a portable optical device that combines broadband near-infrared spectroscopy (B-NIRS) and diffuse correlation spectroscopy (DCS) to provide simultaneous assessments of cerebral blood flow (CBF), tissue saturation (

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Effects of antiplatelet therapy after stroke due to intracerebral haemorrhage (RESTART): a randomised, open-label trial

    Get PDF
    Background: Antiplatelet therapy reduces the risk of major vascular events for people with occlusive vascular disease, although it might increase the risk of intracranial haemorrhage. Patients surviving the commonest subtype of intracranial haemorrhage, intracerebral haemorrhage, are at risk of both haemorrhagic and occlusive vascular events, but whether antiplatelet therapy can be used safely is unclear. We aimed to estimate the relative and absolute effects of antiplatelet therapy on recurrent intracerebral haemorrhage and whether this risk might exceed any reduction of occlusive vascular events. Methods: The REstart or STop Antithrombotics Randomised Trial (RESTART) was a prospective, randomised, open-label, blinded endpoint, parallel-group trial at 122 hospitals in the UK. We recruited adults (≄18 years) who were taking antithrombotic (antiplatelet or anticoagulant) therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage, discontinued antithrombotic therapy, and survived for 24 h. Computerised randomisation incorporating minimisation allocated participants (1:1) to start or avoid antiplatelet therapy. We followed participants for the primary outcome (recurrent symptomatic intracerebral haemorrhage) for up to 5 years. We analysed data from all randomised participants using Cox proportional hazards regression, adjusted for minimisation covariates. This trial is registered with ISRCTN (number ISRCTN71907627). Findings: Between May 22, 2013, and May 31, 2018, 537 participants were recruited a median of 76 days (IQR 29–146) after intracerebral haemorrhage onset: 268 were assigned to start and 269 (one withdrew) to avoid antiplatelet therapy. Participants were followed for a median of 2·0 years (IQR [1·0– 3·0]; completeness 99·3%). 12 (4%) of 268 participants allocated to antiplatelet therapy had recurrence of intracerebral haemorrhage compared with 23 (9%) of 268 participants allocated to avoid antiplatelet therapy (adjusted hazard ratio 0·51 [95% CI 0·25–1·03]; p=0·060). 18 (7%) participants allocated to antiplatelet therapy experienced major haemorrhagic events compared with 25 (9%) participants allocated to avoid antiplatelet therapy (0·71 [0·39–1·30]; p=0·27), and 39 [15%] participants allocated to antiplatelet therapy had major occlusive vascular events compared with 38 [14%] allocated to avoid antiplatelet therapy (1·02 [0·65–1·60]; p=0·92). Interpretation: These results exclude all but a very modest increase in the risk of recurrent intracerebral haemorrhage with antiplatelet therapy for patients on antithrombotic therapy for the prevention of occlusive vascular disease when they developed intracerebral haemorrhage. The risk of recurrent intracerebral haemorrhage is probably too small to exceed the established benefits of antiplatelet therapy for secondary prevention
    corecore